Stefan Schrade Doctoral Student Other, ETH Zurich Funding: - stefan.schrade@hest.ethz.ch +41 44 510 72 31

Can't see who you were looking for? You might want to try browsing by lab or looking in the A-Z people list.

Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.

Advances in Real-World Applications for Legged Robots

Authors: Bellicoso, C. D.; Bjelonic, M.; Wellhausen, L.; Holtmann, K.; Günther, F.; Tranzatto, M.; Fankhauser, P.; Hutter, M.

This paper provides insight into the application of the quadrupedal robot ANYmal in outdoor missions of industrial inspection (ARGOS Challenge) and search and rescue (European Robotics League (ERL) Emergency Robots). In both competitions, the legged robot had to autonomously and semi-autonomously navigate in real-world scenarios to complete high-level tasks such as inspection and payload delivery. In the ARGOS competition, ANYmal used a rotating LiDAR sensor to localize on the industrial site and map the terrain and obstacles around the robot. In the ERL competition, additional Real-Time Kinematic (RTK)-Global Positioning System (GPS) was used to co-localize the legged robot with respect to a Micro Aerial Vehicle (MAV) that creates maps from the aerial view. The high mobility of legged robots allows overcoming large obstacles, e.g. steps and stairs, with statically and dynamically stable gaits. Moreover, the versatile machine can adapt its posture for inspection and payload delivery. The paper concludes with insight into the general learnings from the ARGOS and ERL challenges

Reference

Posted on: April 23, 2019

Concurrent Optimization of Mechanical Design and Locomotion Control of a Legged Robot

  • Authors: Digumarti, K. M.; Gehring, C.; Coros, S.; Hwangbo, J.; Siegwart, R.

This paper introduces a method to simultaneously optimize design and control parameters for legged robots to improve the performance of locomotion based tasks. The morphology of a quadrupedal robot was optimized for a trotting and bounding gait to achieve a certain speed while tuning the control parameters of a robust locomotion controller at the same time. The results of the optimization show that a change of the structure of the robot can help increase its admissable top speed while using the same actuation units.

Posted on: July 16, 2014

Quadrupedal locomotion using hierarchical operational space control

  • Authors: Hutter, M.; Sommer, H.; Gehring, C.; Hoepflinger, M.; Bloesch, M.; Siegwart, R.

This paper presents the application of operational space control based on hierarchical task optimization for quadrupedal locomotion. We show how the behavior of a complex robotic machine can be described by a simple set of least squares problems with different priorities for motion, torque, and force optimization. Using projected dynamics of floating base systems with multiple contact points, the optimization dimensionality can be reduced or decoupled such that the formulation is purely based on the inversion of kinematic system properties. The present controller is extensively tested in various experiments using the fully torque controllable quadrupedal robot StarlETH. The load distribution is optimized for static walking gaits to improve contact stability and/or actuator efficiency under various terrain conditions. This is augmented with simultaneous joint position and torque limitations as well as with an interpolation method to ensure smooth contact transitions. The same control structure is further used to stabilize dynamic trotting gaits under significant external disturbances such as uneven ground or pushes. To the best of our knowledge, this work is the first documentation of static and dynamic locomotion with pure task-space inverse dynamics (no joint position feedback) control.

Posted on: July 16, 2014