NCCR Robotics

NCCR Robotics

Intelligent Robots for Improving the Quality of Life The National Centre of Competence in Research (NCCR) Robotics is a Swiss nationwide organisation funded by the Swiss National Science Foundation… Read more

Partner Institutions

Partner Institutions

Our researchers in the field of wearable robotics work with a number of specialist organisations to ensure that both doctors and patients are consulted at every stage of development.



NCCR Robotics is organised around a number of research groups and labs.The lead members of each lab are shown below. Follow the links to learn more about each person,… Read more

Press Pack

Press Pack

For a summary of our activities please download our info pack. Need more information?



Prostheses, or artificial limbs, are commonly used to replace both the look and function of missing limbs. Recent advances in technology have meant that passive prostheses are becoming a thing… Read more

MyoSwiss met W. A. de Vigier’s innovation and personality criteria

The jury of the W. A. De Vigier has revealed the top 10 candidates to proceed to the final stage of the competition. Besides their innovative products, this year’s selection laid emphasis on the CEOs’s personality. Five winners will be announced and each awarded CHF100’000. From over 220 submitted projects, the jury picked the Top …

NCCR drones can now be effortlessly controlled with pointing gestures.

NCCR drones can now be effortlessly controlled with pointing gestures. A video demonstration of the system developed by IDSIA has been published at the Human-Robot Interaction (HRI 2018) conference, March 5-8, 2018, Chicago, IL, USA. More info:

Development of VariLeg: first results and user evaluation from the CYBATHLON 2016

Just published in Journal of NeuroEngineering and Rehabilitation, this article by Stefan O. Schrade et al. presents the first results and user evaluation of VariLeg, an exoskeleton with variable stiffness actuation,  from the CYBATHLON 2016.  Read the article here. The article is related to the thematic series in JNER on the Cybathlon: as well as Prof. Gassert …

Cybathlon has been shortlisted for two sport awards

Sports Technology Awards: Best New Concept Best Participation Technology The ceremony will take place in London, on May 3rd 2018. For more information, click here:

Past Events

Date/Time Event Description
29 Jun – 3 Jul 2020
All Day
ARCHE 2020
Wangen an der Aare, Wangen an der Aare
ARCHE (Advanced Robotic Capabilities for Hazardous Environment) was initiated in 2017 by the SCDR of the DDPS and is lead together with the Teaching Unit of Engineering/Rescue/NBC, ETH Zurich, and...
7 Jul – 13 Jul 2019
All Day
Summer School on Rehabilitation Robotics
Shangai Jiao Tong University, Shangai
The Summer School on Rehabilitation Robotics will take place at the Biomedical Engineering School, Shanghai Jiao Tong University (SJTU) between 7-13 July 2019. Organisers: - SJTU: Prof. Shanbao Tong, Prof....
1 Apr – 5 Apr 2019
All Day
Hannover Messe 2019
Deutsche Messe, Hannover
NCCR Robotics will be present at the Hannover Messe 2019 with a corporate booth and 3 additional booths for its spin-offs: Dronistics FES-ABILITY Sevensense The corporate booth will also showcase...
3 Dec – 4 Dec 2018
All Day
BMI Symposium 2018 "Controlling behavior" Prof. Pavan Ramdya, Prof. Carl Petersen & Prof. Auke Ijspeert (NCCR Robotics PI) invite you to the 2018 BMI Symposium on "Controlling behavior". With this one and a half day symposium, we...
23 Nov 2018
All Day
Neuroprosthetics Annual Research Symposium Prof. Stéphanie Lacour, NCCR Robotics PI and Director of the Center for Neuroprosthetics,  announces the First Neuroprosthetics Annual Research Symposium to be held on November 23rd, 2018, at Campus Biotech,...
1 Nov 2018
All Day
Swiss Robotics Industry Day 2018
SwissTech Convention Center, Ecublens
The next Swiss Robotics Industry Day will take place on November 1st, 2018 at the Swiss Tech Convention Centre, in Lausanne. All information on the event can be found here:
29 Oct – 31 Oct 2018
9:00 am – 5:00 pm
Conference on Robot Learning (CoRL 2018) CoRL 2018 will take place on October 29-31 2018 in Zurich. The conference focuses on the intersection of robotics and machine learning. CoRL aims at being a selective, top-tier venue...
18 Oct – 19 Oct 2018
All Day
SNSF Site Visit 2018 The 2018 SNSF Site Visit will take place in Bern, on October 18 and 19th. More information will be provided closer to the dates.
8 Oct – 9 Oct 2018
All Day
Aerial Futures: The Drone Frontier @ HUBweek
Boston District Hall, Boston
Swissnex Boston is gathering a selection of some of the most exciting drone exhibitors from Switzerland and the United States to bring to HUBweek. Expect an eclectic selection of UAVs...
31 Jul – 2 Aug 2018
All Day
EPFL Drone Days Some NCCR Robotics laboratories will present demos at the EPFL Drone Days 2018.
2 Jul – 7 Jul 2018
All Day
Wangen an der Aare, Wangen an der Aare
The event took place in the training village of the civil protection forces of the Swiss Federal Department for Defense, Civil Protection and Sport and was used as field test...
1 Jun 2018
3:15 pm – 4:45 pm
Distinguished Seminar in Robotics, Systems & Control The Institute of Robotics and Intelligent Systems presents: Telerobotic Touch June 1st 2018, 15h15-16h15 Place: ETHZ, Main Building (HG G3) For those at EPFL: a video streaming will take place...
21 May – 25 May 2018
All Day
ICRA 2018, Brisbane, Australia
Brisbane Convention and Exhibition Center, South Brisbane
Roland Siegward, NCCR Robotics PI, will be a member of the Industry Forum Chairs Committee at ICRA 2018, in Brisbane, Australia. Margarita Chli, NCCR Robotics PI, will give a keynote...
23 Apr – 27 Apr 2018
All Day
Hannover Messe
Deutsche Messe, Hannover
NCCR Robotics has a booth within the Swiss Innovation Pavillion and will be accompanied by 2 two of our spin-offs:  MyoSwiss and Foldaway Haptics and the project "MIRobotics". For more information...
19 Apr 2018
All Day
Forward (Forum de l'Innovation pour les PME)
SwissTech Convention Center, Ecublens
NCCR Robotics will have a booth during this event, hosting two of our spin-offs Foldaway Haptics, and TWIICE.  
13 Mar – 15 Mar 2018
All Day
European Robotics Forum
Tampere Hall, Tampere
The European Robotics Forum (ERF) 2018 hosted over 900 participants this year in Tampere, Finland from 13 to 15th March. NCCR Robotics was present with a booth, hosting two of...
12 Mar – 14 Mar 2018
All Day
AAAS Science Robotics Meeting
Plaza Heisei, Tokyo
Robert Riener, NCCR Robotics co-director, will give a keynote talk about Cybathlon at the AAAS Science Robotics Meeting in Tokyo, Japan.
8 Mar – 9 Mar 2018
All Day
NCCR Robotics Annual Retreat
Hotel Ambassador, Bern
The 2018 NCCR Robotics Annual Retreat (Bern, 8-9th March) was very successful, not only in bringing the community together but in achieving its targets in preparation for the next phase...
25 Jan 2018
1:30 pm – 3:30 pm
Motor learning and neurorehabilitation: training with or without errors? - A talk by Professor Laura Marchal Crespo Abstract: There is increasing interest in using robotic devices to provide rehabilitation therapy following stroke. Robotic guidance is generally used in motor training to reduce performance errors while practicing. However,...
12 Sep – 15 Sep 2017
All Day
11th Conference on Field and Service Robotics
ETH Zurich, Zurich
For more details and to register please see:
25 Jul 2017
6:30 pm
ROBOTIK-LABOR AN DER ETH ZÜRICH - TeleZüri Sendung Tune into TeleZüri at 18:30 to hear Robert Riener speaking about all things rehabilitation robotics and Cybathlon.
5 Jun – 10 Jun 2017
All Day
Summer School on Rehabilitation Robotics
Biomedical Engineering School, Shanghai
Organised by the Riener Lab, ETH Zurich. For more information please see:          
2 Jun 2017
8:30 am – 5:00 pm
ICRA Workshop on Event-based vision
sands expo and convention centre, Singapore 018971
Tobi Delbruck and Davide Scaramuzza are confirmed speakers. For more information please see:  
24 Apr – 28 Apr 2017
All Day
Hannover Messe
Hannover Messe, Hannover
We will present a booth at the Hannover Messe along with Swiss Robotics partners. To organise a meeting with us please contact 
5 Apr 2017
11:00 am – 12:00 pm
Talk: Hearing the light: Optogenetic Sti
Campus Biotech, H8 Auditorium, Geneva
Hearing the light: Optogenetic Sti by Tobias Moser Institute for Auditory Neuroscience & InnerEarLab, University Medical Center Goettingen, GE. For more information please see the seminar website.
20 Mar 2017
6:15 pm – 7:45 pm
Talk: Roboter als Reha-Helfer im Einsatz by Robert Riener
Universität Zurich Zentrum, Hörsaal KOL-F-101, Zurich
For more information please see the official flyer.
16 Mar 2017
10:00 am – 11:00 am
Talk by Prof. Eric Tytell (Tufts University), Quantifying responses to perturbations during locomotion in fish
MED 115 18, EPFL, Lausanne
6 Mar – 9 Mar 2017
All Day
R4L @HRI2017
Aula der Wissenschaft – Hall of Science, Vienna
2 Mar 2017
12:30 pm – 2:00 pm
Business Ideas @EPFL Swiss Robotics going global
SwissTech Convention Center, Ecublens
2 Mar 2017
12:30 pm – 2:00 pm
Business Ideas @EPFL
SwissTech Convention Center, Ecublens
13 Feb 2017
2:00 pm – 3:00 pm
Talk by Dr Diego Pardo (ETHZ) Legged Robots: Stepping out of the continuous and differentiable zone.
EPFL, Lausanne
16 Dec 2016
3:15 pm – 4:15 pm
Talk: MIT Cheetah: new design paradigm shift toward mobile robots, ETH Distinguished Lecture in Robotics, Systems & Control - Sangbae Kim
ETH Zurich, HG G3, Zurich
9 Nov 2016
10:00 am – 11:00 am
Talk: Rehabilitation robotics - Cristina Santos, Universidade do Minho, Portugal; Dealing with uncertainty in robot grasping - Alexandre Bernardino, Instituto Superior Técnico, Lisbon, Portugal; Locomotion with the Walkman humanoid robot - Nikos Tsagarakis, Istituto Italiano di Tecnologia, Genova, Italy.
MED 115 18, EPFL, Lausanne
4 Nov 2016
3:15 pm – 4:15 pm
Talk: Designing and Controlling Robots for Direct Interaction with Humans by Prof. Alin Albu-Schaeffer, German Aerospace Center, Germany.
ETH Zurich, HG G3, Zurich
2 Nov 2016
All Day
Swiss Robotics Industry Day
SwissTech Convention Center, Ecublens
Please see
23 Oct – 27 Oct 2016
All Day
International Symposium on Safety, Security and Rescue Robotics (SSRR 16) Please see
9 Oct – 12 Oct 2016
All Day
Intercontinental Hotel, BUDAPEST, 1052 Budapest
Please see:
8 Oct 2016
12:00 am
Cybathlon 2016
SWISS Arena, Kloten
Please see
6 Oct 2016
All Day
Cybathlon Symposium
SWISS Arena, Kloten
For further information, please see
30 Sep – 7 Jan 2016
All Day
The origami robot Tribot from Paik lab is currently at the exhibition in +Ultra Knowledge & Gestaltung in Berlin
23 Sep 2016
3:15 pm – 4:15 pm
Talk: Humanitarian Robotics and Automation Technologies by Dr. Raj Madhavan
ETH Zurich, HG G3, Zurich
13 Jul – 15 Jul 2016
All Day
Workshop on Dynamic Locomotion and Manipulation (DLMC2016)
ETH Zurich, Zurich
Please see the website

Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.

A soft robotic actuator using dielectric minimum energy structures

  • Authors: Shintake, Jun; Rosset, Samuel; Floreano, Dario; Shea, Herbert

Dielectric minimum energy structures are capable of large actuation stroke, and consist of a pre-stretched dielectric elastomer actuator (DEA) laminated onto a flexible frame, which makes it easy to obtain both simple and complex shapes. We report here on the fabrication and characterization of a prototype capable of one-dimensional bending actuation. For the DEA, several combinations of ion-implanted PDMS membranes and uniaxial pre-stretch ratio were used. The actuator was characterized by measuring the deformation and output force vs. applied voltage. The results showed that the prototype is able to exhibit bending actuation in the range of around 60 deg. Additionally the initial deformation depends on fabrication parameters such as thickness of the materials, pre-stretch ratio as well as dose of implanted ions.

Posted on: May 14, 2012

A survey of sensor fusion methods in wearable robotics

  • Authors: Novak, Domen; Riener, Robert

Modern wearable robots are not yet intelligent enough to fully satisfy the demands of endusers, as they lack the sensor fusion algorithms needed to provide optimal assistance and react quickly to perturbations or changes in user intentions. Sensor fusion applications such as intention detection have been emphasized as a major challenge for both robotic orthoses and prostheses. In order to better examine the strengths and shortcomings of the field, this paper presents a review of existing sensor fusion methods for wearable robots, both stationary ones such as rehabilitation exoskeletons and portable ones such as active prostheses and full-body exoskeletons. Fusion methods are first presented as applied to individual sensing modalities (primarily electromyography, electroencephalography and mechanical sensors), and then four approaches to combining multiple modalities are presented. The strengths and weaknesses of the different methods are compared, and recommendations are made for future sensor fusion research.

Posted on: October 22, 2014

A Variable Stiffness Catheter Controlled with an External Magnetic Field

  • Authors: Chautems, Christophe; Tonazzini, Alice; Floreano, Dario; Nelson, Bradley

Remote magnetic navigation of catheters is a technique used to perform radiofrequency ablation of heart tissue in order to treat cardiac arrhythmias. The flexible magnetic catheters used in this context are in some cases not sufficiently dexterous to navigate the complex and patient- specific anatomy of the heart. To overcome such limitations, this paper proposes …

Posted on: November 26, 2018

A wireless brain-spine interface alleviating gait deficits after Parkinson’s disease in primates

Authors: Milekovic, T.; Raschella, F.; Schiavone, G.; Capogrosso, M.; Micera, S.; Courtine, G.; Lacour, S.

“Levodopa and deep brain stimulation alleviate most of the symptoms associated with Parkinson*s disease. However, axial gait disorders are less responsive to these treatments. These deficits include short and slow steps, balance deficits and freezing of gait that involves episodes during which the affected persons are not capable of initiating locomotion.
Over the past decade, we have established a mechanistic and technological framework that guided the design of electrical spinal cord stimulation protocols engaging extensor and flexor muscle groups. We created an interface between the leg motor cortex activity and these spatially selective stimulation protocols, so as to engineer a brain*spine interface * a neuroprosthetic system that reinforced intended movements. As early as 6 days after spinal cord injury, this brain*spine interface restored weight-bearing locomotor movements of the paralyzed leg in nonhuman primates. Here, we show that the brain- spine interface effectively alleviates axial gait deficits observed in Parkinson*s disease. These experiments were conducted in MPTP-treated Rhesus macaque monkeys, which is the gold model to reproduce Parkinson*s disease symptomatology. After MPTP treatment, a rhesus macaque was implanted with the wireless brain-spine interface. Brain recordings of the left and right leg motor cortex were used to detect neural states related to flexion and extension movements of both legs while the animal walked freely overground or over a horizontal ladder. The detection of these gait events controlled an implanted pulse generator that delivered electrical stimulation through two e-dura electrode array implants that covered the dorsal aspects of the lumbar and sacral spinal cord.”


  • Published in: Lemanic Neuroscience Annual Meeting
  • Date: 2017
Posted on: April 8, 2019

Actuator With Angle-Dependent Elasticity for Biomimetic Transfemoral Prostheses

  • Authors: Pfeifer, Serge; Pagel, Anna; Riener, Robert; Vallery, Heike

Despite tremendous improvements in recent years, lower-limb prostheses are still inferior to their biological counterparts. Most powered knee joints use impedance control, but it is unknown which impedance profiles are needed to replicate physiological behavior. Recently, we have developed a method to quantify such profiles from conventional gait data. Based on this method, we derive stiffness requirements for knee prostheses, and we propose an actuation concept where physical actuator stiffness changes in function of joint angle. The idea is to express stiffness and moment requirements as functions of angle, and then to combine a series elastic actuator (SEA) with an optimized nonlinear transmission and parallel springs to reproduce the profiles. By considering the angle-dependent stiffness requirement, the upper bound for the impedance in zero-force control could be reduced by a factor of two. We realize this ANGle-dependent ELAstic Actuator (ANGELAA) in a leg, with rubber cords as series elastic elements. Hysteresis in the rubber is accounted for, and knee moment is estimated with a mean error of 0.7 Nm. The nonlinear parallel elasticity creates equilibria near 0◦ as well as 90◦ knee flexion, frequent postures in daily life. Experimental evaluation in a test setup shows force control bandwidth around 5–9 Hz, and a pilot experiment with an amputee subject shows the feasibility of the approach. While weight and power consumption are not optimized in this prototype, the incorporated mechatronic principles may pave the way for cheaper and lighter actuators in artificial legs and in other applications where stiffness requirements depend on kinematic configuration.

Posted on: October 22, 2014

Adaptive Morphology: A Design Principle for Multimodal and Multifunctional Robots

  • Authors: Mintchev, Stefano; Floreano, Dario

Morphology plays an important role in behavioral and locomotion strategies of living and artificial systems. There is biological evidence that adaptive morphological changes can not only extend dynamic performances by reducing tradeoffs during locomotion but also provide new functionalities. In this article, we show that adaptive morphology is an emerging design principle in robotics that benefits from a new generation of soft, variable-stiffness, and functional materials and structures. When moving within a given environment or when transitioning between different substrates, adaptive morphology allows accommodation of opposing dynamic requirements (e.g., maneuverability, stability, efficiency, and speed). Adaptive morphology is also a viable solution to endow robots with additional functionalities, such as transportability, protection, and variable gearing. We identify important research and technological questions, such as variable-stiffness structures, in silico design tools, and adaptive control systems to fully leverage adaptive morphology in robotic systems.

Posted on: September 27, 2016

Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor

  • Authors: Brandli, Christian; Mantel, Thomas A.; Hutter, Marco; Höpflinger, Markus A.; Berner, Raphael; Siegwart, Roland; Delbruck, Tobi

Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2 mm.

Posted on: July 30, 2014

Advances in Real-World Applications for Legged Robots

Authors: Bellicoso, C. D.; Bjelonic, M.; Wellhausen, L.; Holtmann, K.; Günther, F.; Tranzatto, M.; Fankhauser, P.; Hutter, M.

This paper provides insight into the application of the quadrupedal robot ANYmal in outdoor missions of industrial inspection (ARGOS Challenge) and search and rescue (European Robotics League (ERL) Emergency Robots). In both competitions, the legged robot had to autonomously and semi-autonomously navigate in real-world scenarios to complete high-level tasks such as inspection and payload delivery. In the ARGOS competition, ANYmal used a rotating LiDAR sensor to localize on the industrial site and map the terrain and obstacles around the robot. In the ERL competition, additional Real-Time Kinematic (RTK)-Global Positioning System (GPS) was used to co-localize the legged robot with respect to a Micro Aerial Vehicle (MAV) that creates maps from the aerial view. The high mobility of legged robots allows overcoming large obstacles, e.g. steps and stairs, with statically and dynamically stable gaits. Moreover, the versatile machine can adapt its posture for inspection and payload delivery. The paper concludes with insight into the general learnings from the ARGOS and ERL challenges


Posted on: April 23, 2019

Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord

Authors: Capogrosso, M.; Gandar, J.; Greiner, N.; Moraud, E. M.; Wenger, N.; Shkorbatova, P.; Musienko, P.; Minev, I.; Lacour, S.; Courtine, C.

We recently developed soft neural interfaces enabling the delivery of electrical and chemical stimulation to the spinal cord. These stimulations restored locomotion in animal models of paralysis. Soft interfaces can be placed either below or above the dura mater. Theoretically, the subdural location combines many advantages, including increased selectivity of electrical stimulation, lower stimulation thresholds, and targeted chemical stimulation through local drug delivery. However, these advantages have not been documented, nor have their functional impact been studied in silico or in a relevant animal model of neurological disorders using a multimodal neural interface.
We characterized the recruitment properties of subdural interfaces using a realistic computational model of the rat spinal cord that included explicit representation of the spinal roots. We then validated and complemented computer simulations with electrophysiological experiments in rats. We additionally performed behavioral experiments in rats that received a lateral spinal cord hemisection and were implanted with a soft interface.
Main results
In silico and in vivo experiments showed that the subdural location decreased stimulation thresholds compared to the epidural location while retaining high specificity. This feature reduces power consumption and risks of long-term damage in the tissues, thus increasing the clinical safety profile of this approach. The hemisection induced a transient paralysis of the leg ipsilateral to the injury. During this period, the delivery of electrical stimulation restricted to the injured side combined with local chemical modulation enabled coordinated locomotor movements of the paralyzed leg without affecting the non-impaired leg in all tested rats. Electrode properties remained stable over time, while anatomical examinations revealed excellent bio-integration properties.
Soft neural interfaces inserted subdurally provide the opportunity to deliver electrical and chemical neuromodulation therapies using a single, bio-compatible and mechanically compliant device that effectively alleviates locomotor deficits after spinal cord injury.


Posted on: April 8, 2019

An Active Connection Mechanism for Soft Modular Robots

  • Authors: Germann, Jürg Markus; Dommer, Michael; Pericet Camara, Ramon; Floreano, Dario

To date, most modular robotic systems lack flexibility when increasing the number of modules due to their hard building blocks and rigid connection mechanisms. In order to improve adaptation to environmental changes, softness on the module level might be beneficial. However, coping with softness requires fundamental rethinking the way modules are built. A major challenge is to develop a connection mechanism that does not limit the softness of the modules, does not require precise alignment and allows for easy detachment. In this paper, we propose a soft active connection mechanism based on electroadhesion. The mechanism uses electrostatic forces to connect modules. The method is easy to implement and can be integrated in a wide range of soft module types. Based on our experimental results, we conclude that the mechanism is suitable as a connection principle for light-weight modules when efficiency in a wide range of softness, tolerance to alignment and easy detachment are desired. The main contributions of this article are (i) the qualitative comparison of different connector principles for soft modular robots, (ii) the integration of electroadhesion, featuring a novel electrode pattern design, into soft modules, and (iii) the demonstration and characterization of the performance of functional soft module mockups including the connection mechanism.

Posted on: September 6, 2011