Professor Stéphanie Lacour, NCCR Robotics PI, appointed as New Director of the Center for Neuroprosthetics

Professor Stephanie Lacour, Bertarelli Foundation Chair in Neuroprosthetic Technology, and NCCR Robotics PI, to succeed Professor Olaf Blanke as Director of the Center for Neuroprosthetics. Professor Olaf Blanke has been at the helm of the Center for Neuroprosthetics (CNP) since 2012. He hands over the Direction of the Center to Professor Stéphanie Lacour on February …

Three NCCR Robotics Spin Offs selected in the IMD Start-up Competition 2017/2018

Feeltronix, Fotokite and TWIICE have been selected in this competition. For more info, visit IMD webpage. The Feeltronix breakthrough technology platform stretches the mechanical limits of electronics and provides solutions for robust and ultra-compliant rubber-based systems. Applications include smart bands for the next generation of wearables in sports, healthcare, AR/VR and fashion. Fotokite is a spin-off from ETHZürich’s Flying Machine Arena with patented technology that fundamentally solves …

New NCCR Robotics Spin Fund

The NCCR Robotics Spin Fund committee has granted Hadrien Michaud the Spin Fund for Feeltronix, hosted at Lacour lab. Feeltronix recently received Venturekick stage 2. Read more

New soft robots really suck!

Recent advances in soft robotics have seen the development of soft pneumatic actuators (SPAs) to ensure that all parts of the robot are soft, including the functional parts. These SPAs have traditionally used increased pressure in parts of the actuator to initiate movement, but today a team from NCCR Robotics and RRL, EPFL publish a …

Stéphanie Lacour appointed Full Professor

12.12.16 – Congratulations to Prof. Stéphanie Lacour who has been appointed Full Professor of Microtechnology and Bioengineering in the School of Engineering (STI), EPFL.Prof. Lacour has recently made news with her work in NCCR Robotics with both the e-dura implant and the stretchable solid-liquid electrical film. Read more.

A Composite Thread that Varies in Rigidity

27.10.16 – Soft “hardware” components are becoming more and more popular solutions within the field of robotics. In fact, softness, compliance and foldability bring significant advantages to devices, by allowing conformability and safe interactions with users, objects and unstructured environments. However, for some applications the softness of components adversely reduces the range of forces that …

1 2 3 6
Prof. Roger Gassert Associate Professor of Rehabilitation Engineering Rehabilitation Engineering Laboratory (RELab), ETH Zurich Funding: - +41 44 632 32 66
Laurent Dejace Doctoral Student Other, EPFL Funding: Directly +41 21 69 55187

Can't see who you were looking for? You might want to try browsing by lab or looking in the A-Z people list.

Looking for publications? You might want to consider searching on the EPFL Infoscience site which provides advanced publication search capabilities.

A Foldable Antagonistic Actuator

  • Authors: Shintake, Jun; Rosset, Samuel; Schubert, Bryan Edward; Floreano, Dario; Shea, Herbert

We report on an actuator based on dielectric elastomers that is capable of antagonistic actuation and passive folding. This actuator enables foldability in robots with simple structures. Unlike other antagonistic dielectric elastomer devices, our concept uses elastic hinges to allow the folding of the structure, which also provides an additional design parameter. To validate the actuator concept through a specific application test, a foldable elevon actuator with outline size of 70 mm × 130 mm is developed with angular displacement range and torque specifications matched to a 400-mm wingspan micro-air vehicle (MAV) of mass 130 g. A closed-form analytical model of the actuator is constructed, which was used to guide the actuator design. The actuator consists of 125-μm-thick silicone membranes as the dielectric elastomers, 0.2mm-thick fiberglass plate as the frame structure, and 50-μm-thick polyimide as the elastic hinge. We measured voltage-controllable angular displacement up to ±26° and torque of 2720 mN · mm at 5 kV, with good agreement between the model and the measured data. Two elevon actuators are integrated into the MAV, which was successfully flown, with the foldable actuators providing stable and well-controlled flight. The controllability was quantitatively evaluated by calculating the correlation between the control signal and the MAV motion, with a correlation in roll axis of over 0.7 measured during the flights, illustrating the high performance of this foldable actuator.

Posted on: September 16, 2014

A Perching Mechanism for Flying Robots Using a Fibre-Based Adhesive

  • Authors: Daler, Ludovic; Klaptocz, Adam; Briod, Adrien; Sitti, Metin; Floreano, Dario

Robots capable of hover flight in constrained indoor environments have many applications, however their range is constrained by the high energetic cost of airborne locomotion. Perching allows flying robots to scan their environment without the need to remain aloft. This paper presents the design of a mechanism that allows indoor flying robots to attach to vertical surfaces. To date, solutions that enable flying robot with perching capabilities either require high precision control of the dynamics of the robot or a mechanism robust to high energy impacts. We propose in this article a perching mechanism comprising a compliant deployable pad and a passive self-alignment system, that does not require any active control during the attachment procedure. More specifically, a perching mechanism using fibre-based dry adhesives was implemented on a 300 g flying platform. An adhesive pad was first modeled and optimized in shape for maximum attachment force at the low pre-load forces inherent to hovering platforms. It was then mounted on a deployable mechanism that stays within the structure of the robot during flight and can be deployed when a perching maneuver is initiated. Finally, the perching mechanism is integrated onto a real flying robot and successful perching maneuvers are demonstrated as a proof of concept.

Posted on: January 29, 2013

A Soft Robot for Random Exploration of Terrestrial Environments

Authors: Mintchev, S.; Zappetti, D.; Willemin, J.; Floreano, D.


  • International Conference on Robotics and Automation (ICRA), pp. 7492-7497, Jun. 2018
A swarm of randomly moving miniature robots is an effective solution for the exploration of unknown terrains. However, the deployment of a swarm of miniature robots poses two challenges: finding an adequate locomotion strategy for fast exploration and obstacles negotiation; and implementing simple design and control solutions suited for mass manufacturing. Here, we tackle these challenges by developing a new soft robot with a minimalistic design and a simple control strategy that can randomly propel itself above obstacles and roll on the ground upon landing. The robot is equipped with two propellers that are periodically activated to jump, a soft cage that protects the robot from impacts and allows to passively roll on the ground, and a passive self-righting mechanism for repetitive jumps. The minimalistic control and design reduce the complexity of the mechanics and electronics and are instrumental to the production of a large number of robots. In the paper, the key design aspects of the robot are discussed, the locomotion of a single prototype is experimentally characterized, and improvements of the system for future swarm operations are discussed.


Posted on: June 16, 2018

A soft robotic actuator using dielectric minimum energy structures

  • Authors: Shintake, Jun; Rosset, Samuel; Floreano, Dario; Shea, Herbert

Dielectric minimum energy structures are capable of large actuation stroke, and consist of a pre-stretched dielectric elastomer actuator (DEA) laminated onto a flexible frame, which makes it easy to obtain both simple and complex shapes. We report here on the fabrication and characterization of a prototype capable of one-dimensional bending actuation. For the DEA, several combinations of ion-implanted PDMS membranes and uniaxial pre-stretch ratio were used. The actuator was characterized by measuring the deformation and output force vs. applied voltage. The results showed that the prototype is able to exhibit bending actuation in the range of around 60 deg. Additionally the initial deformation depends on fabrication parameters such as thickness of the materials, pre-stretch ratio as well as dose of implanted ions.

Posted on: May 14, 2012

A Variable Stiffness Catheter Controlled with an External Magnetic Field

  • Authors: Chautems, Christophe; Tonazzini, Alice; Floreano, Dario; Nelson, Bradley

Remote magnetic navigation of catheters is a technique used to perform radiofrequency ablation of heart tissue in order to treat cardiac arrhythmias. The flexible magnetic catheters used in this context are in some cases not sufficiently dexterous to navigate the complex and patient- specific anatomy of the heart. To overcome such limitations, this paper proposes …

Posted on: November 26, 2018

Adaptive Morphology: A Design Principle for Multimodal and Multifunctional Robots

  • Authors: Mintchev, Stefano; Floreano, Dario

Morphology plays an important role in behavioral and locomotion strategies of living and artificial systems. There is biological evidence that adaptive morphological changes can not only extend dynamic performances by reducing tradeoffs during locomotion but also provide new functionalities. In this article, we show that adaptive morphology is an emerging design principle in robotics that benefits from a new generation of soft, variable-stiffness, and functional materials and structures. When moving within a given environment or when transitioning between different substrates, adaptive morphology allows accommodation of opposing dynamic requirements (e.g., maneuverability, stability, efficiency, and speed). Adaptive morphology is also a viable solution to endow robots with additional functionalities, such as transportability, protection, and variable gearing. We identify important research and technological questions, such as variable-stiffness structures, in silico design tools, and adaptive control systems to fully leverage adaptive morphology in robotic systems.

Posted on: September 27, 2016

An Active Connection Mechanism for Soft Modular Robots

  • Authors: Germann, Jürg Markus; Dommer, Michael; Pericet Camara, Ramon; Floreano, Dario

To date, most modular robotic systems lack flexibility when increasing the number of modules due to their hard building blocks and rigid connection mechanisms. In order to improve adaptation to environmental changes, softness on the module level might be beneficial. However, coping with softness requires fundamental rethinking the way modules are built. A major challenge is to develop a connection mechanism that does not limit the softness of the modules, does not require precise alignment and allows for easy detachment. In this paper, we propose a soft active connection mechanism based on electroadhesion. The mechanism uses electrostatic forces to connect modules. The method is easy to implement and can be integrated in a wide range of soft module types. Based on our experimental results, we conclude that the mechanism is suitable as a connection principle for light-weight modules when efficiency in a wide range of softness, tolerance to alignment and easy detachment are desired. The main contributions of this article are (i) the qualitative comparison of different connector principles for soft modular robots, (ii) the integration of electroadhesion, featuring a novel electrode pattern design, into soft modules, and (iii) the demonstration and characterization of the performance of functional soft module mockups including the connection mechanism.

Posted on: September 6, 2011

Artificial muscles for soft robots

  • Authors: Shintake, Jun; Rosset, Samuel; Floreano, Dario; Shea, Herbert

Recent work on soft gripper using an artificial muscle technology was shown at Festival de robotique in EPFL.

Posted on: April 24, 2013

Bi-Modal Control of Vacuum-Powered Soft Pneumatic Actuators with Embedded Liquid Metal-Based Strain Sensitive Skin

Authors: Robertson, M. A.; Dejace, L. M.; Lacour, S.; Paik, J.

Soft robotic systems are composed of active and passively deformable structures which are intrinsically compliant, flexible, and elastic. Although these features offer benefits of adaptability, robustness, and safety, controlling these types of robots is a significant challenge, in part from the difficulty of obtaining feedback from sensors which provide state information without hindering the advantageous material properties which grant these systems their unique mechanical behavior. We demonstrate here the first integration of a flexible, stretchable, liquid metal-based strain sensor with vacuum powered soft pneumatic actuators (V-SPAs) for simultaneous controlled feedback of the soft actuators as well as user input and soft robotic device interaction. The soft sensors which are encapsulated within a Polydimethylsiloxane (PDMS) membrane are directly embedded in the outer body skin of the soft actuators, and can be used to correlate the deformation of the body under vacuum actuation to overall actuator strain or to detect external disturbances. This information is used to compute and control the angle of a rotational 3-DoF actuator module, as well as detect implicit user input control signals by direct interaction without the need for an external control interface. The dual use of embedded sensing shown in this work provides a fundamental strategy for soft collaborative robot applications.


  • Presented at: IEEE International Conference on Soft Robotics, Seoul, South Korea
  • Detailed record: Infoscience
  • Read paper
  • Date: April 2019
Posted on: May 10, 2019

Biomimetic Underwater Robots Based on Dielectric Elastomer Actuators

  • Authors: Shintake, Jun; Shea, Herbert; Floreano, Dario

Dielectric elastomer actuators (DEAs), a soft actuator technology, hold great promise for biomimetic underwater robots. The high-voltages required to drive DEAs can however make them challenging to use in water. This paper demonstrates a method to create DEA-based biomimetic swimming robots that operate reliably even in conductive liquids. We ensure the insulation of the high-voltage DEA electrodes without degrading actuation performance by laminating silicone layers. A fish and a jellyfish were fabricated and tested in water. The fish robot has a length of 120 mm and a mass of 3.8 g. The jellyfish robot has a 61 mm diameter for a mass of 2.6 g. The measured swimming speeds for a periodic 3 kV drive voltage were 8 mm/s for the fish robot, and 1.5 mm/s for the jellyfish robot.

Posted on: October 27, 2016