Search
Close
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Menu
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Search
Close
  • NCCR Robotics
    • Highlights
    • Governance
    • Our team
    • Labs
    • Past programs
    • Alumni
    • Open positions in robotics
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
    • Research resources
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Building equality
    • Women in Robotics
    • Resources
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Photo exhibit
    • Other Outreach Events
Menu
  • NCCR Robotics
    • Highlights
    • Governance
    • Our team
    • Labs
    • Past programs
    • Alumni
    • Open positions in robotics
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
    • Research resources
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Building equality
    • Women in Robotics
    • Resources
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Photo exhibit
    • Other Outreach Events

Quadrupedal locomotion using hierarchical operational space control

Publication date:

Authors:

  • Published in: The International Journal of Robotics Research (ISSN: 1741-3176), vol. 33, num. 8, p. 1062–1077
  • Publication date: 2014

This paper presents the application of operational space control based on hierarchical task optimization for quadrupedal locomotion. We show how the behavior of a complex robotic machine can be described by a simple set of least squares problems with different priorities for motion, torque, and force optimization. Using projected dynamics of floating base systems with multiple contact points, the optimization dimensionality can be reduced or decoupled such that the formulation is purely based on the inversion of kinematic system properties. The present controller is extensively tested in various experiments using the fully torque controllable quadrupedal robot StarlETH. The load distribution is optimized for static walking gaits to improve contact stability and/or actuator efficiency under various terrain conditions. This is augmented with simultaneous joint position and torque limitations as well as with an interpolation method to ensure smooth contact transitions. The same control structure is further used to stabilize dynamic trotting gaits under significant external disturbances such as uneven ground or pushes. To the best of our knowledge, this work is the first documentation of static and dynamic locomotion with pure task-space inverse dynamics (no joint position feedback) control.

    Reference

    • Detailed record: https://infoscience.epfl.ch/record/200259?ln=en
    • EPFL-ARTICLE-200259
    • doi:10.1177/0278364913519834
    Reference
    Read the paper
    • Innovation Booster Robotics
    • News
    • Past Events
    • Contact
    • Innovation Booster Robotics
    • News
    • Past Events
    • Contact
    • Journalists and media
    • News bulletin archive
    • Newsletter archive
    • Journalists and media
    • News bulletin archive
    • Newsletter archive
    Twitter Linkedin Youtube
    NCCR Robotics partner institutions

    Leading house

    epfl_white

    Co-Leading house

    eth_white
    unizuerich_white
    idsia_white
    unibe_all_white
    empa-all-white
    unibasel_white

    This website was built by NCCR Robotics and provides useful information on Swiss Robotics. From December 2022, it is no longer updated.

    Copyright © 2022 NCCR Robotics. All rights reserved.