Search
Close
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Menu
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Search
Close
  • About Us
    • Governance
    • Our team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for girls
    • Master students
    • Young researchers
    • Building equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • PhD/Postdoc Exchange Program
    • Master Students Exchange Program
    • Women Keynote Speakers
    • Best Paper Awards
    • Ukrainian Researchers
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Other Outreach Events
Menu
  • About Us
    • Governance
    • Our team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for girls
    • Master students
    • Young researchers
    • Building equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • PhD/Postdoc Exchange Program
    • Master Students Exchange Program
    • Women Keynote Speakers
    • Best Paper Awards
    • Ukrainian Researchers
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Other Outreach Events

Neglected physical human-robot interaction may explain variable outcomes in gait neurorehabilitation research

Publication date:

  • 22 Sep 2021

Authors:

Plooij, M.
Apte, S.
Keller, U.
Baines, P.
Sterke, B.
Asboth, L.
Courtine, G.
von Zitzewitz, J.
Vallery, H.

Abstract
During gait neurorehabilitation, many factors influence the quality of gait patterns, particularly the chosen body-weight support (BWS) device. Consequently, robotic BWS devices play a key role in gait rehabilitation of people with neurological disorders. The device transparency, support force vector direction, and attachment to the harness vary widely across existing robotic BWS devices, but the influence of these factors on the production of gait remains unknown. Because this information is key to designing an optimal BWS, we systematically studied these determinants in this work. We report that with a highly transparent device and a conventional harness, healthy participants select a small backward force when asked for optimal BWS conditions. This unexpected finding challenges the view that during human-robot interactions, humans predominantly optimize energy efficiency. Instead, they might seek to increase their feeling of stability and safety. We also demonstrate that the location of the attachment points on the harness strongly affects gait patterns, yet harness attachment is hardly reported in literature. Our results establish principles for the design of BWS devices and personalization of BWS settings for gait neurorehabilitation.

Reference
Doi: 10.1126/scirobotics.abf1888
Published in: Science Robotics,
 Volume 6,
 Issue 58,
Read the paper
Version: Published
Download
  • Intranet
  • News
  • Events
  • Contact
Menu
  • Intranet
  • News
  • Events
  • Contact
  • Journalists and media
  • News bulletin archive
  • Newsletter archive
Menu
  • Journalists and media
  • News bulletin archive
  • Newsletter archive
Subscribe to our newsletter
Twitter Linkedin Youtube Instagram Facebook
Partners

Leading house

epfl_white

Co-Leading house

eth_white
unizuerich_white
idsia_white
unibe_all_white
empa-all-white
unibasel_white
SNSF logo

Copyright © 2021 NCCR Robotics. All rights reserved.