Search
Close
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Menu
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Search
Close
  • NCCR Robotics
    • Highlights
    • Governance
    • Our team
    • Labs
    • Past programs
    • Alumni
    • Open positions in robotics
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
    • Research resources
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Building equality
    • Women in Robotics
    • Resources
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Photo exhibit
    • Other Outreach Events
Menu
  • NCCR Robotics
    • Highlights
    • Governance
    • Our team
    • Labs
    • Past programs
    • Alumni
    • Open positions in robotics
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
    • Research resources
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Building equality
    • Women in Robotics
    • Resources
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Photo exhibit
    • Other Outreach Events

Learning to Control Planar Hitting Motions in a Monigolf-like Task

Publication date:

Authors:

  • Presented at: The 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), San Francisco, CA, September 25-30, 2011
  • Published in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011. (IROS 2011).
  • Series: IEEE International Conference on Intelligent Robots and Systems
  • Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa, 2011

A current trend in robotics is to define robot tasks using a combination of superimposed motion patterns. For maximum versatility of such motion patterns, they should be easily and efficiently adaptable for situations beyond those for which the motion was originally designed. In this work, we show how a challenging minigolf-like task can be efficiently learned by the robot using a basic hitting motion model and a task-specific adaptation of the hitting parameters: hitting speed and hitting angle. We propose an approach to learn the hitting parameters for a minigolf field using a set of provided examples. This is a non- trivial problem since the successful choice of hitting parameters generally represent a highly non-linear, multi-valued map from the situation-representation to the hitting parameters. We show that by limiting the problem to learning one combination of hitting parameters for each input, a high-performance model of the hitting parameters can be learned using only a small set of training data. We compare two statistical methods, Gaussian Process Regression (GPR) and Gaussian Mixture Regression (GMR) in the context of inferring hitting parameters for the minigolf task. We validate our approach on the 7 degrees of freedom Barrett WAM robotic arm in both a simulated and real environment.

    Note:

    Winner of JTCF Novel Technology Paper Award for Amusement Culture

    Reference

    • Detailed record: https://infoscience.epfl.ch/record/168022?ln=en
    • EPFL-CONF-168022
    • View record in Web of Science
    Reference
    Read the paper
    • Innovation Booster Robotics
    • News
    • Past Events
    • Contact
    • Innovation Booster Robotics
    • News
    • Past Events
    • Contact
    • Journalists and media
    • News bulletin archive
    • Newsletter archive
    • Journalists and media
    • News bulletin archive
    • Newsletter archive
    Twitter Linkedin Youtube
    NCCR Robotics partner institutions

    Leading house

    epfl_white

    Co-Leading house

    eth_white
    unizuerich_white
    idsia_white
    unibe_all_white
    empa-all-white
    unibasel_white

    This website was built by NCCR Robotics and provides useful information on Swiss Robotics. From December 2022, it is no longer updated.

    Copyright © 2022 NCCR Robotics. All rights reserved.