Search
Close
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Menu
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Search
Close
  • NCCR Robotics
    • Highlights
    • Governance
    • Our team
    • Labs
    • Past programs
    • Alumni
    • Open positions in robotics
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
    • Research resources
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Building equality
    • Women in Robotics
    • Resources
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Photo exhibit
    • Other Outreach Events
Menu
  • NCCR Robotics
    • Highlights
    • Governance
    • Our team
    • Labs
    • Past programs
    • Alumni
    • Open positions in robotics
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
    • Research resources
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Building equality
    • Women in Robotics
    • Resources
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Photo exhibit
    • Other Outreach Events

Learning of Closed-Loop Motion Control

Publication date:

Authors:

  • Presented at: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Chicago, Illinois, USA, September 14-­18, 2014
  • Publication date: 2014

Learning motion control as a unified process of designing the reference trajectory and the controller is one of the most challenging problems in robotics. The complexity of the problem prevents most of the existing optimization algorithms from giving satisfactory results. While model-based algorithms like iterative linear-quadratic-Gaussian (iLQG) can be used to design a suitable controller for the motion control, their performance is strongly limited by the model accuracy. An inaccurate model may lead to degraded performance of the controller on the physical system. Although using machine learning approaches to learn the motion control on real systems have been proven to be effective, their performance depends on good initialization. To address these issues, this paper introduces a two-step algorithm which combines the proven performance of a model-based controller with a model-free method for compensating for model inaccuracy. The first step optimizes the problem using iLQG. Then, in the second step this controller is used to initialize the policy for our PI$^2$-01 reinforcement learning algorithm. This algorithm is a derivation of the PI$^2$ algorithm enabling more stable and faster convergence. The performance of this method is demonstrated both in simulation and experimental results.

    Reference

    • Detailed record: https://infoscience.epfl.ch/record/200838?ln=en
    • EPFL-CONF-200838
    Reference
    Read the paper
    • Innovation Booster Robotics
    • News
    • Past Events
    • Contact
    • Innovation Booster Robotics
    • News
    • Past Events
    • Contact
    • Journalists and media
    • News bulletin archive
    • Newsletter archive
    • Journalists and media
    • News bulletin archive
    • Newsletter archive
    Twitter Linkedin Youtube
    NCCR Robotics partner institutions

    Leading house

    epfl_white

    Co-Leading house

    eth_white
    unizuerich_white
    idsia_white
    unibe_all_white
    empa-all-white
    unibasel_white

    This website was built by NCCR Robotics and provides useful information on Swiss Robotics. From December 2022, it is no longer updated.

    Copyright © 2022 NCCR Robotics. All rights reserved.