Search
Close
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Menu
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Search
Close
  • About Us
    • Governance
    • Our team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for girls
    • Master students
    • Young researchers
    • Building equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • PhD/Postdoc Exchange Program
    • Master Students Exchange Program
    • Women Keynote Speakers
    • Best Paper Awards
    • Ukrainian Researchers
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Other Outreach Events
Menu
  • About Us
    • Governance
    • Our team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for girls
    • Master students
    • Young researchers
    • Building equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • PhD/Postdoc Exchange Program
    • Master Students Exchange Program
    • Women Keynote Speakers
    • Best Paper Awards
    • Ukrainian Researchers
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Other Outreach Events

DroNet: Learning to Fly by Driving

Publication date:

Authors:

 

Civilian drones are soon expected to be used in a wide variety of tasks, such as aerial surveillance, delivery, or monitoring of existing architectures. Nevertheless, their deployment in urban environments has so far been limited. Indeed, in unstructured and highly dynamic scenarios, drones face numerous challenges to navigate autonomously in a feasible and safe way. In contrast to traditional “map-localize-plan” methods, this letter explores a data-driven approach to cope with the above challenges. To accomplish this, we propose DroNet: a convolutional neural network that can safely drive a drone through the streets of a city. Designed as a fast eight-layers residual network, DroNet produces two outputs for each single input image: A steering angle to keep the drone navigating while avoiding obstacles, and a collision probability to let the UAV recognize dangerous situations and promptly react to them. The challenge is however to collect enough data in an unstructured outdoor environment such as a city. Clearly, having an expert pilot providing training trajectories is not an option given the large amount of data required and, above all, the risk that it involves for other vehicles or pedestrians moving in the streets. Therefore, we propose to train a UAV from data collected by cars and bicycles, which, already integrated into the urban environment, would not endanger other vehicles and pedestrians. Although trained on city streets from the viewpoint of urban vehicles, the navigation policy learned by DroNet is highly generalizable. Indeed, it allows a UAV to successfully fly at relative high altitudes and even in indoor environments, such as parking lots and corridors. To share our findings with the robotics community, we publicly release all our datasets, code, and trained networks.

Reference

  • Published in: IEEE Robotics and Automation Letters (Volume: 3 , Issue: 2 , April 2018)
  • DOI: 10.1109/LRA.2018.2795643
  • Read paper
  • Date: 2018
Reference
Read the paper
  • Intranet
  • News
  • Events
  • Contact
Menu
  • Intranet
  • News
  • Events
  • Contact
  • Journalists and media
  • News bulletin archive
  • Newsletter archive
Menu
  • Journalists and media
  • News bulletin archive
  • Newsletter archive
Subscribe to our newsletter
Twitter Linkedin Youtube Instagram Facebook
Partners

Leading house

epfl_white

Co-Leading house

eth_white
unizuerich_white
idsia_white
unibe_all_white
empa-all-white
unibasel_white
SNSF logo

Copyright © 2021 NCCR Robotics. All rights reserved.