Search
Close
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Menu
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Search
Close
  • About Us
    • Governance
    • Our team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for girls
    • Master students
    • Young researchers
    • Building equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • PhD/Postdoc Exchange Program
    • Master Students Exchange Program
    • Women Keynote Speakers
    • Best Paper Awards
    • Ukrainian Researchers
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Other Outreach Events
Menu
  • About Us
    • Governance
    • Our team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for girls
    • Master students
    • Young researchers
    • Building equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • PhD/Postdoc Exchange Program
    • Master Students Exchange Program
    • Women Keynote Speakers
    • Best Paper Awards
    • Ukrainian Researchers
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Other Outreach Events

Adaptive Morphology: A Design Principle for Multimodal and Multifunctional Robots

Publication date:

Authors:

  • Published in: IEEE Robotics & Automation Magazine, vol. 23, num. 3, p. 42-54
  • Piscataway: Ieee-Inst Electrical Electronics Engineers Inc, 2016

Morphology plays an important role in behavioral and locomotion strategies of living and artificial systems. There is biological evidence that adaptive morphological changes can not only extend dynamic performances by reducing tradeoffs during locomotion but also provide new functionalities. In this article, we show that adaptive morphology is an emerging design principle in robotics that benefits from a new generation of soft, variable-stiffness, and functional materials and structures. When moving within a given environment or when transitioning between different substrates, adaptive morphology allows accommodation of opposing dynamic requirements (e.g., maneuverability, stability, efficiency, and speed). Adaptive morphology is also a viable solution to endow robots with additional functionalities, such as transportability, protection, and variable gearing. We identify important research and technological questions, such as variable-stiffness structures, in silico design tools, and adaptive control systems to fully leverage adaptive morphology in robotic systems.

    Reference

    • Detailed record: https://infoscience.epfl.ch/record/221478?ln=en
    • EPFL-ARTICLE-221478
    • doi:10.1109/MRA.2016.2580593
    • View record in Web of Science
    • URL: http://ieeexplore.ieee.org/document/7565704/
    • URL: https://youtu.be/F2SxdoUOD9k
    Reference
    Read the paper
    • Intranet
    • News
    • Events
    • Contact
    Menu
    • Intranet
    • News
    • Events
    • Contact
    • Journalists and media
    • News bulletin archive
    • Newsletter archive
    Menu
    • Journalists and media
    • News bulletin archive
    • Newsletter archive
    Subscribe to our newsletter
    Twitter Linkedin Youtube Instagram Facebook
    Partners

    Leading house

    epfl_white

    Co-Leading house

    eth_white
    unizuerich_white
    idsia_white
    unibe_all_white
    empa-all-white
    unibasel_white
    SNSF logo

    Copyright © 2021 NCCR Robotics. All rights reserved.