Search
Close
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Menu
  • About Us
    • Governance
    • Our Team
    • Labs
    • Open positions
    • Alumni
  • Research
    • Wearable robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying Robots
      • Legged robots
      • Collaboration, Learning and Tests
    • Educational robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for Kids
      • R2t2 Mars Mission
    • Graduate Programs in Robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Robotics for Girls
    • Master students
    • Young Researchers
    • Building Equality
    • Women in Robotics
    • Resources
  • Awards & Programs
    • Spin-Fund
    • Master Students Exchange Program
    • PhD/Postdoc exchange program
    • Award for Career Development
    • Swiss Robotics Masters Award
    • Award for Scientific Visibility
    • Women keynote speakers
    • Best Paper Award
    • Ukrainian researchers
  • Outreach
    • Swiss Drone Days
    • Cybathlon
    • Swiss Robotics Days
    • Other Outreach Events
  • Contact
Search
Close
  • NCCR Robotics
    • Highlights
    • Governance
    • Our team
    • Labs
    • Past programs
    • Alumni
    • Open positions in robotics
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
    • Research resources
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Building equality
    • Women in Robotics
    • Resources
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Photo exhibit
    • Other Outreach Events
Menu
  • NCCR Robotics
    • Highlights
    • Governance
    • Our team
    • Labs
    • Past programs
    • Alumni
    • Open positions in robotics
  • Research
    • Wearable Robotics
      • ReGait++
      • Third Arm
    • Rescue Robotics
      • Flying robots
      • Legged robots
      • Collaborations, learning and tests
    • Educational Robotics
      • Cellulo
      • Thymio
    • Publications
    • Open Science
    • Research resources
  • Education
    • How to get into robotics
      • How our professors got into robotics
      • How our researchers got started
    • Robotics for kids
      • Activities for kids
      • R2t2 Mars mission
    • Graduate programs in robotics
    • Resources
  • Tech Transfer
    • Researchers expertise
    • Spin-Offs
    • Swiss Robotics Day
    • Swiss Robotics Ecosystem
    • Resources
  • Equal Opportunities
    • Building equality
    • Women in Robotics
    • Resources
  • Outreach
    • Swiss Robotics Days
    • Swiss Drone Days
    • Cybathlon
    • Photo exhibit
    • Other Outreach Events

A Trajectory-based Calibration Method for Stochastic Motion Models

Publication date:

Authors:

  • Presented at: IEEE/RSJ International Conference on Intelligent Robots and Systems
  • Published in: 2011 Ieee/Rsj International Conference On Intelligent Robots And Systems (ISBN: 978-1-61284-455-8), p. 4341-4347
  • Series: IEEE International Conference on Intelligent Robots and Systems
  • Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa, 2011

In this paper, we present a quantitative, trajectory-based method for calibrating stochastic motion models of water-floating robots. Our calibration method is based on the Correlated Random Walk (CRW) model, and consists in minimizing the Kolmogorov-Smirnov (KS) distance between the step length and step angle distributions of real and simulated trajectories generated by the robots. First, we validate this method by calibrating a physics-based motion model of a single 3-cm-sized robot floating at a water/air interface under fluidic agitation. Second, we extend the focus of our work to multi-robot systems by performing a sensitivity analysis of our stochastic motion model in the context of Self-Assembly ( SA). In particular, we compare in simulation the effect of perturbing the calibrated parameters on the predicted distributions of self-assembled structures. More generally, we show that the SA of water-floating robots is very sensitive to even small variations of the underlying physical parameters, thus requiring real-time tracking of its dynamics.

    Reference

    • Detailed record: https://infoscience.epfl.ch/record/167787?ln=en
    • EPFL-CONF-167787
    • View record in Web of Science
    Reference
    Read the paper
    • Innovation Booster Robotics
    • News
    • Past Events
    • Contact
    • Innovation Booster Robotics
    • News
    • Past Events
    • Contact
    • Journalists and media
    • News bulletin archive
    • Newsletter archive
    • Journalists and media
    • News bulletin archive
    • Newsletter archive
    Twitter Linkedin Youtube
    NCCR Robotics partner institutions

    Leading house

    epfl_white

    Co-Leading house

    eth_white
    unizuerich_white
    idsia_white
    unibe_all_white
    empa-all-white
    unibasel_white

    This website was built by NCCR Robotics and provides useful information on Swiss Robotics. From December 2022, it is no longer updated.

    Copyright © 2022 NCCR Robotics. All rights reserved.